

2023.07

Background

Hyundai Mobis declared its carbon neutrality strategy in line with the vision 'Green Transformation to Net-Zero' in December 2021. We consider various reduction measures that encompass our business sites and value chain, and progressively pursue greenhouse gas reduction with the ultimate goal of achieving Net-Zero.

The climate scenario analysis this time has strengthened the financial impact measurement on various risk and opportunity factors by using climate modeling-based analysis tools compared to the previous scenario analysis conducted.

Various climate change scenarios have been assumed, ranging from scenarios where fossil fuels are heavily used and development is expanded indiscriminately, to scenarios aimed at achieving the international target of 1.5°C or below. These scenarios encompass a wide range of potential future situations related to climate change.

Based on these scenarios, the plan is to identify the medium to long-term impacts on the company and continuously ensure resilience to climate change through alignment with the organization's business strategy and financial planning.

Scenario Used for Analysis

For the scenario analysis, the most representative climate change scenarios publicly available have been adopted, including those from the Intergovernmental Panel on Climate Change (IPCC) and the International Energy Agency (IEA). For the analysis of physical risks, the scenarios used were the ^TIPCC SSP 8.5, 4.5, 2.6 scenarios_J, while for transition risks and opportunities, the analysis was based on the scenarios provided by the ^TIEA STEPS, APS, NZ_J.

The aim is to utilize these scenarios, considering both the current policy maintenance and high fossil fuel consumption situations, to strengthen strategic decision-making for complex and diverse circumstances. We plan to use these scenarios to assess and adjust our business and financial plans in preparation for future climate situations. By doing so, Hyundai Mobis intends to enhance its ability to adapt to and navigate through different climate scenarios effectively.

SSP 1.9 has been excluded from the analysis as it was projected to have minimal financial impact due to low average temperature increase.

Hyundai Mobis' Adopted Scenario

Category	IP	cc		IEA			
Approach	Academic perspectiv	ve to climate change	Energy perspective based on policy direction				
Scenario	RCP	SSP	NZE APS		STEPS		
Report	IPCC 5 th Assessment Report	Annually published World Energy Outloo			Outlook		
Consideration Criteria	 Selected based on Earth's radiative forcing in the year 2100 	 Considering future socio-economic factors with RCP scenarios 	 Assuming that the energy market will be shaped based on major countries' policy implementation plans 				
Key Implication		from ①staying below uel-based society	Limit to below 1.5°C - Achieving Net-Zero	Full implementation of NDC/carbon neutrality targets by each country	Maintaining the current policy direction		
Temperature Rise in the Year 2100 (℃)	 (1) SSP 1 - 1.9: 1.4°C (2) SSP 1 - 2.6: 1.8°C (3) SSP 2 - 4.5: 2.7°C (4) SSP 3 - 7.0: 3.6°C (5) SSP 5 - 8.5: 4.4°C 		<u>1.4</u> ℃	1.7℃	2.5℃		

[Chart] Type of Climate Change Scenario

Analysis Scope

The scenario analysis was conducted for domestic and overseas production/logistics sites and major subsidiaries within the operational boundaries of Hyundai Mobis, which covers approximately 99% of the company's consolidated revenue. For transition risk and opportunity, analysis to the company's value chain (upstream & downstream) is partly included.

Physical Risk

Opstream V Direct operations Downstream		Upstream	V	Direct operations		Downstream	
---	--	----------	---	-------------------	--	------------	--

Transition Risk and Opportunities

V	Upstream	V	Direct operations	۷	Downstream
---	----------	---	-------------------	---	------------

Hyundai Mobis has set short-/mid-/long-term time horizons for assessing potential climate risks and opportunities. Considering the carbon neutrality strategy within the ranges of (short-term) 0-3 years, (mid-term) 3-10 years, and (long-term) 11-25 years, the company has examined the likelihood and impact of respective risks and opportunities that may arise in 2025, 2030, and 2040.

The year 2040 is the target year for the company's carbon neutrality in own operations, and we will gradually develop strategies and methodologies towards the carbon neutrality goal (Year 2045), including the supply chain.

Strategy Rolling	Short-term: 0~3 years	Mid-term: 3~10 years	Long-term: 11~25 years
Carbon Neutrality Target Year	2025	2030	2040

Methodology

For physical risks, analysis on various hazards was conducted using the climate modeling-based tool, Jupiter Intelligence and estimated the financial impacts on Hyundai Mobis' domestic and overseas business sites, as well as its major subsidiaries. Physical risks covered scenarios up to the year 2100, but this report focuses on the impacts until 2040.

Regarding transition risks and opportunities, the report considered the diverse internal and external environments surrounding the company, along with Hyundai Mobis' strategic direction, and incorporated insights from experts.

Category	Ту	/pe	Methodology			
		Flood				
Physical Risk	Acute	Typhoon	 Total loss amount due to asset impairment and restoration 			
		Wildfire				
	Chronic Heat- wave		 Revenue loss due to decreased labor productivity 			
Transition Risk and Opportunity	 Analys Analys Net-Z 	 Analysis of domestic and overseas regulatory policies Analysis of domestic and overseas energy and automotive market outlooks Analysis of Hyundai Mobis' internal status and key strategic directions (sales strategy, Net-Zero strategy, etc.) Benchmarking on Peer group / Automotive value chain 				

Risk and Opportunity Factors

Hyundai Mobis is continuously identifying and monitoring potential climate risks and opportunities that may affect the company in response to the changing business environment. In this analysis, factors such as rising raw material costs and the promotion of low-emission vehicles through K-EV100 are perceived as new risks and opportunities, respectively, and have been considered in the analysis.

For certain risk and opportunity factors, a quantitative analysis has been conducted to assess their potential financial impact on the company.

KRW	Quantitative /	Analysi	is Conducted Time horizon: OShort-t	erm () Mid-term () Long-term H: High MH: Mediu	ım-High M	I: Medium	n L: Low
C	ategory		Risk · Opportunity Factor	Description	Time Horizon	Likeli- hood	Impact
	Current Regulation	T1	Rise in greenhouse gas emission price KRW	Increase in carbon prices due to streng- thened carbon regulations and allocations	•	Н	М
Detection		T2	Strengthening international regulations (e.g. Carbon Border Adjustment Mechanism, CBAM)	 Response to products subject to the CBAM among products exported to the EU 	•	MH	м
Potential Regulation	Т3	Regulations and directives for existing products/services	 Fines incurred due to non-compliance with regulations, further productivity decline due to product recalls and production halt, decrease in asset value 	•	М	MH	
Tech	Legal Risk	T4	Exposure to litigations	 Group lawsuits arising from the absence of climate change measures and responses by stakeholders including public/environmental organizations, customers, etc. 	•	L	MH
	T Technical Risk	Т5	Expansion of low-carbon options for existing products/services	 Decrease in customer responsiveness when securing technology, adjusting business portfolios become challenging due to expansion of demand for eco- friendly cars 	O	MH	MH
Risk		Т6	Transition costs for low-carbon technology KRW	 Increase in infrastructure costs for transitioning to low-carbon emission technologies within business sites 	•	MH	MH
		Τ7	Customer behavioral changes	 Reduction of business opportunities due to increased climate change demands from clients, with the risk of losing contracting opportunities if not addressed 	O	MH	н
	Market Risk	Т8	Market signal uncertainty KRW	 Cost rise due to annual increase in national general electricity cost 		Н	н
		Т9	Rise in raw materials cost KRW	Increase in raw materials procurement costs due to suppliers' climate change response	O	Н	н
	Reputatio nal Risk	T10	Stigmatization of the industry	Talent attrition and increased difficulty in attracting specialized professionals due to reputation deterioration by inadequate climate change response	•	М	М
	ι αι ΚΙΣΚ	T11	Increasing stakeholder concerns and negative sentiments	 Reduction in market value due to negative views from external evaluation agencies /stakeholders. 	•	М	м

KRW Quantitative Analysis Conducted

Time horizon: OShort-term Mid-term Long-term H: High MH: Medium-High M: Medium L: Low

C	ategory		Risk · Opportunity Factor	Description	Time Horizon	Likeli- hood	Impact		
		P1	Asset damage due to weather- related disasters such as floods	Increased exposure to flooding risk	•	MH	М		
Dhusical	Acute	P2	Asset loss due to wildfires KRW	Losses incurred due to annual fire incidents within 1km ² vicinity		М	L		
Physical Risk		Р3	Damage due to typhoons KRW	Occurrence of typhoon damages caused by continuous tropical or subtropical low- pressure systems	•	L	н		
Chronic		P4	Decreased productivity due to heatwaves KRW	Decreased productivity due to abnormal prolonged high-temperature conditions lasting for several days	•	М	MH		
	Resource Efficiency	01	Use of efficient production and distribution process	 Productivity improvement through the adoption of energy-efficient operational systems and mitigation technologies 	•	М	М		
	Energy Consump -tion	02	Participation in carbon market (Carbon credit sales)	 Increased opportunities for profit through the activation of the carbon emission trading market and greenhouse gas reduction 	•	М	М		
	Product Service	O4 Product Service	O3 Development and expans O3 low-emission products ar services KRW		 Increasing demand for low-carbon and carbon-emission avoidance products and services 	O	н	Н	
				04	Development of new products and services through R&D/innovation	 Generating revenue through the expansion of eco-friendly product development 	O	Н	н
Opportu-				Service	Service	05	Ability to diversify business activities	 Exploring new markets, expanding, and diversifying business activities related to climate change response 	•
nity		O6 Changing consumer prefer towards low-carbon produ		 Increasing expectations from stakeholders regarding climate change performance improvement 	•	н	Н		
	Market	07		 Expanding the discovery and procure- ment opportunities for new global OE 	•	н	МН		
		08	Participation in renewable energy and energy efficiency programs	 Cost savings for purchase of carbon credit through transition to renewable energy 	•	MH	MH		
	Resilience	09	Supply chain diversification	 Proactively respond to natural disasters caused by climate change or sanctions due to specific regional regulations by dispersing dependence on specific suppliers 		М	MH		
		т10	Transition to low-emission vehicles KRW	 Cost savings for maintenance and carbon credits by transitioning to low-/zero- carbon vehicles 	•	MH	М		

Financial Impact Analysis of Key Risks and Opportunities

Hyundai Mobis has assessed the financial impact levels of risks and opportunities surrounding climate change by applying various scenario analyses.

This report specifically covers the impacts of transition risks such as 'increased greenhouse gas emission prices' and 'uncertainty in market signals (increased electricity prices)', as well as physical risks like 'flooding' and 'heatwaves'. Additionally, it prioritizes the disclosure of the financial impact of opportunity factors such as 'expanding the development of low-emission products and services' and 'participating in renewable energy and energy efficiency programs'.

T1. Rise in	Greenhouse Gas Emission Price [$ au$	ransition Ri	sk]				
Risk Description	 Since 2016, Hyundai Mobis has been designal system and has undergone third-party verific reporting the results to the government ann To achieve the NDC (Nationally Determined Korean government is expected to strengthe domestic emissions trading system. As allocated emission quotas decrease, com to the trading system is expected to intensify 	cation of Scope ually. Contributions) fr en the allocation petition for emis	1 and 2 gre or carbon r of emissio ssion allow	eenhouse g neutrality by on allowanc ances amo	y 2050, the es within t	ons, 2 South he nies subject	
Methodology	 We have conducted an analysis on business sites that are subject to domestic emissions trading system. To calculate carbon emission liabilities, we estimated each relevant facility's Scope 1 and Scope 2 emissions and BAU, and predicted its free emission allowances and outlook of domestic carbon emission credit prices by year. We conservatively applied a 0% paid allocation ratio for the current 3rd phase of the emissions trading system (2021-2025). However, for future scenarios, we considered a trend of paid allocation ratio based on the assumption that the ratio of paid allocation (11.4% in 2030 compared to 2018, 100% in 2050) correlates with South Korea's NDC industry sector reduction targets. Furthermore, we referenced the carbon price projections of South Korea announced from the International Energy Agency (IEA) to estimate emission credit prices for each scenario. 						
					(Unit: KRW	100 million)	
Financial	Projected Scope 1,2 Emissions within Operational Boundaries X	Scenario	Short- term (2025)	Mid- term (2030)	Long- term (2040)	Cumula- tive (~2040)	
Impact	$= \sum$ Allocation and Paid Allocation Ratio =	STEPS (2.5℃)	2	16	154	839	
	^{By} _{year} (purchasing requirement) X	APS (1.7℃)	4	53	401	2,319	
	Carbon Credit Price	NZE (1.4°⊂)	4	55	470	2,615	
Response Plan	 Hyundai Mobis is continuously reviewing op process efficiency through technological adv with biofuels in the medium to long term as Furthermore, we are planning to implement domestic renewable energy market environmediate 	vancements, and part of efforts to strategic renewa	l considerir o reduce gr	ng the repla	cement of gas emissio	boilers	

T8. Uncer	tainty in Market Signal [Transition Risk]
Risk Description	 As the increase in fuel costs due to Russia's invasion of Ukraine and phase-out of nuclear power policy have led to a continuous deficit in the operating performance of Korea Electric Power Corporation (KEPCO), it is anticipated that future electricity price hikes will be inevitable for the normalization of management.

Risk Description	 With Scope 2 emissions accounting for a year average), we are highly sensitive to the business plan while considering the 	fluctuations in the ele	ectricity market. C	Consequently	, managing					
Methodology	 Based on the electricity consumption of that the electricity usage would increase. Furthermore, we predicted our yearly of a ln the case of electricity unit price, we purchasing unit price* and the 2022 SM annual electricity unit price by applying electricity supply plan and the power of (* Calculated the proportional weighted electricity consumption proportion of As the share of renewable energy in th (reaching 70.7% by 2050), it is anticipation increases starting from the year 2037. magnitude of price increases based on 	se by the Scope 2 BA electricity unit price a analyzed the gap bet MP (System Marginal g estimated values ba nix for achieving carb d average of electricit each domestic busin he domestic power ga ated that electricity p Consequently, until	AU (Business-as- and utilized it in t tween the compa l Price) unit price ased on the gove toon neutrality by ty unit prices con ess facility.) eneration mix gr rices will experie 2037, the analys	-Usual) grow the analysis. any's current we predict ernment's 10 2050. rresponding adually incre nce significa is considered	th rate. ed the th to the ases nt d the					
Financial Impact	$= \sum_{\substack{BV \\ year}} \begin{bmatrix} (Expected) Electricity Consumption \\ (MWh) \\ X \\ Electricity Tariff (KRW/kWh) \end{bmatrix}$	(Unit Scenario STEPS (2.5°C) APS (1.7°C) NZE (1.4°C)	Short- term (2025) Mid- term (2030) 632 882 632 882 632 882	Long- term (2040) 1,794 1,798	KRW 1 trillion) Cumula- tive (~2040) 1.878 1.928 1.933					
Response Plan P1. Asset c	 We plan to promote greenhouse gas err options, including solar power generatio Purchase Agreements) purchases. amage due to weather-related disa 	n, REC (Renewable Er	nergy Certificates)), and PPA (P	ower					
Risk Description	 Description at a manageable or low level. Some regions in China and Korea appear to have higher risk levels. However, the ratio of financial losses compared to revenue caused by flood events turns out to be relatively high. This highlights the need for continuous attention and efforts to prevent 									
Methodology	 significant damages. The total loss due to flooding has been calculated as the sum of the amount of asset damage and the loss incurred during the restoration process. The amount of asset damage was calculated by applying damage coefficients to the total asset value, which was assessed using insurance or book values based on Jupiter data for asset valuation by type. The loss incurred during the restoration process was calculated by applying Jupiter data-based downtime loss coefficients to the 2022 revenue. 									
Financial Impact	= Asset Damage Amount (Total Asset Value X Damage Coefficient) + Loss Due to the Restoration of Damaged Assets (Revenue) X (Downtime Coefficient)	Scenario SSP1-2.6(<2° SSP2-4.5(2-3° SSP5-8.5(>4°	° C) 1,406	(Unit: KRW Mid-term (2030) 1,450 1,407 1,496	/ 100 million) Long-term (2040) 1,500 1,504 1,572					

Response Plan	 We are continuously making efforts to review and improve the design and specifications standards of worksites to address the challenges posed by extreme weather conditions and climate change. To prepare for heavy rain and floods, we have improved the specifications of roof scuppers, resulting in a reduction of over 50% in the roof's load burden and an enhancement in drainage capabilities. These improvements are also applied to newly built worksites. Furthermore, to prepare for major disasters that may threaten the safety, we have established an emergency response system based on situational and phased approaches. Hyundai Mobis is also striving to enhance its emergency response capabilities through disaster prevention activities and conducting mock tests. These measures aim to improve the ability to respond effectively in times of crisis. 								
P4. Decre	ased Productivity due to Heat	wave	s [Physical Risk	: Chronic]				
Risk Description	 As global warming continues, abnoheatwaves with higher summer terribeat domes,' where hot air gets traresult, heatwaves exceeding 40 °C a Unlike natural disasters such as typhuman and physical damage (infrashuman health and life. The effects of on human health due to the associate heatwaves can lead to fatigue, exharin decreased labor productivity for othealth risks caused by heatwaves can 2100. More than half of Hyundai Mobis' dwithin the geographical influence of China, Brazil, and India, which are causing in the financial losses due to heatwaves pose a threat to workers which addresses the necessity of comparison. 	pperatu pped a pped a re occu hoons, tructur of globa ation of austion compar- pould pc fourently of South term cc atwave s' healt ontinuo	res than in the past. P loft, is raising tempera urring in various parts heavy rains, and heav e destruction) simulta al weather changes car heatwaves with healt , heatstroke, and dehy nies. According to crea otentially shrink the glo c and overseas busine heatwaves. Particular experiencing unprece h Korea, it is expected on pared to the curren s are relatively lower of h and can lead to decr us management and r	articularly, the tures by 5 to of the world y snowfall, we neously, head h and life-re ydration amount that life-re ydration amount bal GDP by ss worksites dy, regions life edented heat that the risk t situation. compared to reased produ- monitoring.	he phenome 10 °C or mo which cause twaves prim having a dir lated issues ong workers ancy Moody' up to 17.6% are analyze ke the Unite waves, show level will ind those cause octivity in bro	non of bre. As a both harily impact ect impact ect impact ect impact by the year d to be d States, w crease d by floods, bad regions,			
Methodology	 We have calculated the revenue lost decrease in labor productivity caus We considered the revenue for the exceeding 35°C based on Jupiter data productivity (%) due to heatwaves 	ed by l year 2 ata, alo	neatwaves. 022 and annual perce ng with the reduction	ntage of day	/s with temp	peratures			
	[٦		c1	-	V 100 million)			
	2022 Revenue X		Scenario	Short-term (2025)	Mid-term (2030)	Long-term (2040)			
Financial Impact	= Annual Percentage of Days with Temperatures Exceeding 35°C	=	SSP1−2.6(<2℃)	5,066	5,213	5,452			
	X		SSP 2 − 4.5 (2−3°C)	4,889	5,051	5,349			
	Productivity Loss Coefficient		SSP5-8.5(>4℃)	5,110	5,323	5,820			
Response Plan	 To prepare for heatwaves, we are enconditioning systems and actively st efficiency. To ensure the health management or rooms for overseas sites) in each bu always available. This infrastructure situations effectively. 	riving te of our e siness :	o maintain a comfortal mployees, we have set site and are operating t	ble temperation up health cathern with pro-	ure to increa are rooms (n ofessional m	se work ursing edical staff			

Opportunity Description	 In order to actively respond to the increasin Mobis established the portfolio of key comp production(fuel cells), storage(battery), con hybrid vehicles and aims to accelerate come According to the IEA (International Energy / electric vehicles (EVs) has been showing ste total spending on EVs in 2022 has increased In the scenario of fully implementing the Na neutrality goals by each country, it is project electric vehicles (EVs) by the year 2030. This specific regulatory policies applied to intern In 2022, our revenue of electric vehicle com 18.6% of total sales revenue, and there is a company's business direction and strategy. The company aims to achieve an annual ave estimated annual sales in 2022) through the 	g global demand ponents across al version(motor), t mercialization. Agency)'s Global I ady growth since d by 50% compar- tionally Determin ted that one out s can further expa- al combustion en ponents reached consistent upwar erage sales growt e expansion of de	for low-emission l areas, including e hat are essential for EV Outlook, global e 2017. It is estimate ed to 2021. Ned Contributions (of seven vehicles of and accordingly with gine vehicles. 9.7 trillion KRW, a rd trend in alignme th of 14% until 203 velopment and pro-	vehicle, Hyundai lectricity or electric and total spending on ted that the global NDCs) and carbon on the road will be th the country- ccounting for ent with the 11 (based on oduction efforts of
Methodology	 electrification parts, including electric power fuel cells, etc. Based on Hyundai Mobis' goal of achieving vehicle product sales until 2031, we have car 	an annual averag	e growth of 14% i	n total electric
				(Unit: KRW trillion)
Financial Impact	$= \sum \begin{bmatrix} \text{Revenue of Electrification Parts} \\ X \end{bmatrix} =$	Short-term (2025)	Mid-term (2030)	Cumulative (~2030)
·	^{By} _{Year} Compound Annual Growth Rate	14	28	146
Implementa- tion Plan	 Hyundai Mobis has established three direction technological competitiveness, and manufact accomplish our objectives. We will continuously strive to expand investm competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and make efforts to ensure the technological competitive products and technological competitive products	uring competitiver nents in electric vel	ness, and actively in hicle components to	nplements these to o develop globally
08 Partic	ipation in Renewable Energy and En			Doportuoity]
	 As RE100 is the core approach to achieve ca 			

As RETOUTS the core approach to achieve carbon neutrality for Hyundal Mobis, which has large
ratio of electricity consumption, the company has established mid-to long-term goals for RE100
transitions, aiming to achieve 35% by 2025, 65% by 2030, and 100% by 2040.
 Along with the implementation of initiatives such as the EU's REPowerEU and the Biden
administration's Inflation Reduction Act (IRA) and Nationally Determined Contributions (NDCs) for

administration's Inflation Reduction Act (IRA) and Nationally Determined Contributions (NDCs) for greenhouse gas reduction by each country, the domestic and overseas renewable energy market environment is expected to further expand.

Opportunity Description Hyundai Mobis aims for a 100% transition to renewable energy by 2030 in countries such as the United States and the Czech Republic, where the renewable energy market is active. For domestic operations, the company is planning a 35% transition to renewable energy by 2030, considering the expansion plans for national renewable energy supply.

- It is anticipated that carbon emissions trading costs can be reduced until 2050 through the recognition of emissions reductions achieved by purchasing renewable energy.
- We will continuously monitor the domestic and overseas renewable energy market environments for a successful transition to renewable energy and proceed with a strategic transition, considering the prioritization of renewable energy procurement options.

Methodology	 We analyzed the costs that can be saved through purchasing carbon credits and the costs of transitioning to renewable energy programs respectively, and utilized them in the analysis. Firstly, regarding the costs that can be saved through purchasing carbon credits, we calculated the greenhouse gas emissions reduction (BAU Scope 2 domestic emissions) based on the renewable energy conversion targets for each year. Then, considering the trend of the proportion of allocated costs in the domestic electricity market and IEA's projected carbon prices for South Korea, we determined the emission credit price trend for each scenario. As for the transition costs of the renewable energy program, we calculated the expected usage for Hyundai Mobis' domestic and overseas business sites from 2023 to 2040. We applied the renewable energy ratio based on the global RE100 transition targets of 65% by 2030 and 100% by 2040. Additionally, we considered the usage of each facility and incorporated the proportion of Power Purchase Agreements (PPA) or Renewable Energy Certificates (REC) based on predicted domestic and international PPA/REC unit prices. 						
Financial Impact	$= \sum_{\substack{By\\ y \in ar}} \begin{bmatrix} Greenh \\ Cos \end{bmatrix}$	vings through Carl redits Purchase ouse Gas Reductio X t Allocation Ratio X toon Credit Price		- =	Sear Pro	ojected Elect nplementat Renewabl PPA or REC	or Renewable Energy tricity Consumption X ion Rate of Yearly e Energy Targe X Adoption Ratio X REC Unit Price
		Scenario	Short- term (2025)	Mid- term (2030)	Long- term (2040)	Cumula- tive (~2040)	-
	=	STEPS (2.5°C)	(58)	(134)	108	(1,186)	-
		APS(1.7℃)	(58)	(116)	339	(53)	-
		NZE (1.4℃)	(58)	(115)	416	214	-
Implementa- tion Plan	 In April 2022, Hyundai Mobis was the first company in the domestic automotive industry to join RE100, publicly declaring a proactive transition to renewable energy. As of the end of 2022, the total renewable energy consumption and transition rate for Hyundai Mobis stands at 7.3% and the company is actively progressing in its transition to renewable energy by purchasing renewable energy certificates (REC*,iREC, GO**) and joining green pricing for its business sites in Slovakia, Germany, Turkey, etc. (*Renewable Energy Certificates, **Guarantees of Origin) In 2023, we continuously strive to secure the transition motivation by designating renewable energy transition rates as the Key Performance Indication(KPI) for each business division and linking it with the evaluation of individual organizations and executives. In the future, we are also planning to further expand renewable energy transition activities by utilizing Power Purchase Agreement (PPA) options for electricity procurement. 						

Disclaimer

We would like to inform that the quantitative figures derived from this climate scenario analysis report are projected values from a long-term perspective until 2040. Assuming unpredictable future scenarios, we estimated climate change risks and opportunities that can affect the company from various angles, and this analysis was conducted in collaboration with PwC Consulting.

Climate change risks and opportunities that Hyundai Mobis considers important may vary in response to changes in domestic and international business environments in the future. To address this, we intend to maintain transparent communication through continuous monitoring and analysis.

The one for all mobility

